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Abstract
Game-theoretic formulations of feature impor-
tance have become popular as a way to “explain”
machine learning models. These methods define a
cooperative game between the features of a model
and distribute influence among these input ele-
ments using some form of the game’s unique
Shapley values. Justification for these methods
rests on two pillars: their desirable mathemati-
cal properties, and their applicability to specific
motivations for explanations. We show that math-
ematical problems arise when Shapley values are
used for feature importance, and that the solutions
to mitigate these necessarily induce further com-
plexity, such as the need for causal reasoning. We
also draw on additional literature to argue that
Shapley values are not a natural solution to the
human-centric goals of explainability.

1. Introduction
Machine learning models are increasingly being used to
replace human decision-making for tasks involving some
kind of prediction. As state-of-the-art predictive machine
learning models become increasingly inscrutable, there has
been an increase in concern that the black-box nature of
these systems can obscure undesirable properties of the de-
cision algorithm, such as illegal bias or signals accidentally
learned from artifacts irrelevant to the task at hand. More
recently, attempts have been made to “explain” the output
of a complicated function in terms of its inputs to address
these and other concerns. One of the more prominent tools
in this literature has been the Shapley value, a method for
additively attributing value among players of a cooperative
game. In this setting, the “players” are the features used
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by the model, and the game is the prediction of the model.
A variety of methods to assign feature influence using the
Shapley value have recently been developed (Lipovetsky &
Conklin, 2001; Štrumbelj & Kononenko, 2014; Lundberg
et al., 2018; Datta et al., 2016b; Merrick & Taly, 2019; Frye
et al., 2019; Aas et al., 2019).

In this paper, we demonstrate that Shapley-value-based ex-
planations for feature importance fail to serve their desired
purpose in general. We make this argument in two parts.
Firstly, we show that applying the Shapley value to the prob-
lem of feature importance introduces mathematically formal-
izable properties which may not align with what we would
expect from an explanation. Secondly, taking a human-
centric perspective, we evaluate Shapley-value-based ex-
planations through established frameworks of what people
expect from explanations, and find them wanting. We find
that the game theoretic problem formulation of Shapley-
value-based explanations do not match the proposed use
cases for its solution, and thus caution against their usage
except in narrowly constrained settings where they admit a
clear interpretation.

We describe the different Shapley-value-based explanation
frameworks in Section 2, and present our two-part critique
in Sections 3 and 4. We discuss these results and provide
some suggestions in Section 5.

2. Background
In this section, we define the Shapley value and articulate the
different ways in which it has been applied to the problem
of feature importance.

2.1. Classical Shapley values

In cooperative game theory, a coalitional game consists of a
set of N players and a characteristic function v which maps
subsets S ⊆ {1, 2, ..., N} to a real value v(S), satisfying
v(∅) = 0. The value function represents how much collec-
tive payoff a set of players can gain by “cooperating” as a
set. The Shapley value is one way to allocate the total value
of the grand coalition, v({1, 2, ..., N}), between the indi-
vidual players. It is based on trying to answer the question:
how much does player i contribute to the coalition?
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The marginal contribution ∆v(i, S) of player i with respect
to a coalition S is defined as the additional value generated
by including i in the coalition:

∆v(i, S) = v(S ∪ i)− v(S) (1)

Intuitively, the Shapley value can be understood as a
weighted average of a player’s marginal contributions to
every possible subset of players. Let Π be the set of per-
mutations of the integers up to N , and given π ∈ Π let
Si,π = {j : π(j) < π(i)} represent the players preceding
player i in π. The Shapley value of player i is then

ϕv(i) =
1

N !

∑︂
π∈Π

∆v(i, Si,π) (2)

This can be rewritten in terms of the unique subsets S ⊆
{1, 2, ..., N} and the number of permutations for which
some ordering of S immediately precedes player i:

ϕv(i) =
1

N !

∑︂
S⊆{1,2,...,N}

|S|!(N − |S| − 1)!∆v(i, S) (3)

This value is the unique allocation of the grand coalition
v({1, 2, ..., N}) which satisfies the following axioms:

Symmetry: For two players i, j, if ∆v(i, S) = ∆v(j, S)
for any subset of players S, then ϕv(i) = ϕv(j).

Dummy: For a single player i, if ∆v(i, S) = 0 for all
subsets S, then ϕ(i) = 0.

Additivity: For a single player i and two value functions v
and w, ϕv(i) + ϕw(i) = ϕv+w(i).

2.2. Shapley values for feature importance

Several methods have been proposed to apply the Shapley
value to the problem of feature importance. Given a model
f(x1, x2, ..., xd), the features from 1 to d can be considered
players in a game in which the payoff v is some measure
of the importance or influence of that subset. The Shapley
value ϕv(i) can then be viewed as the “influence” of i on
the outcome.

In this section, we describe methods which consist of defin-
ing a value function vf with respect to a model f , and
computing (or approximating) the resulting Shapley values.
We will use the following notation:

D: the set of features {1, 2, ..., d}

X: a multivariate random variable {X1, X2, ..., Xd}

x: a set of values {x1, x2, ..., xd}

XS : the set of random variables {Xi : i ∈ S}

xS : the set of values {xi : i ∈ S}

2.2.1. VALUE FUNCTIONS

Shapley values have a fairly long history in the context of
feature importance. Kruskal (1987) and Lipovetsky & Con-
klin (2001) proposed using the Shapley value to analyze
global feature importance in linear regression by using the
value function vf (S) to represent theR2 of a linear model f
built on predictors S, to decompose the variance explained
additively between the features. Owen & Prieur (2017)
applied the Shapley value to the problem of sensitivity anal-
ysis, where the total variance of a function is the quantity of
interest.

Many recently proposed “local” methods (Ribeiro et al.,
2016; Lundberg & Lee, 2017; Lundberg et al., 2018) define
a value function vf,x : 2d → R that depends on a specific
data instance x to explain how each feature contributes to
the output of the function on this instance. The value of the
grand coalition, in this setting, is the prediction of the model
at x: vf,x(D) = f(x). In addition, to use Shapley values
as an “explanation” of the (grand coalition of) features in
this way, these methods also need to specify how vf,x acts
on proper subsets of the features.

The definitions of Shapley sampling values (Štrumbelj &
Kononenko, 2014), as well as SHAP values (Lundberg &
Lee, 2017), are derived from defining vf,x(S) as the condi-
tional expected model output on a data point when only the
features in S are known:

vf,x(S) = E[f(X)|XS = xS ] = EXS̄ |XS
[f(xS ,XS̄)]

(4)

Quantitative Input Influence (QII) (Datta et al., 2016a) draws
on ideas from causal inference to propose simulating an
intervention on the features not in S, thus breaking correla-
tions with the features in S:

vf,x(S) = ED[f(xS ,XS̄)] (5)

where the distribution D is derived from the product of the
marginal distributions of the features in S̄. The approach
of using a distribution other than that of the original data
was further generalized by (Merrick & Taly, 2019), who
also propose the Formulate, Approximate, Explain (FAE)
framework, so as to unify a number of different approaches
to Shapley value explanations.

2.2.2. ALGORITHMS

Methods based on the same value function can differ in
their mathematical properties based on the assumptions and
computational methods employed for approximation. Tree-
SHAP (Lundberg et al., 2018), an efficient algorithm for
calculating SHAP values on additive tree-based models such
as random forests and gradient boosting machines, can es-
timate EXS̄ |XS

[f(xS ,XS̄)] by observing what proportion
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Method vf,x(S) v̂f,x(S)
KernelSHAP, Shapley sampling values EXS̄ |XS

[f(xS ,XS̄)] ED[f(xS ,XS̄)]
QII, FAE, Interventional TreeSHAP ED[f(xS ,XS̄)] ED[f(xS ,XS̄)]

Conditional TreeSHAP, Frye et al. (2019), Aas et al. (2019) EXS̄ |XS
[f(xS ,XS̄)] EXS̄ |XS

[f(xS ,XS̄)]

Table 1. Proposed value function vf,x for each method, compared with the quantity v̂f,x the algorithm actually approximates. The
interventional distribution D used depends on the method (i.e., for KernelSHAP it is the observational joint distribution of X̄).

of the samples in the training set matching the condition xS

fall into each leaf node, a method which does not rely on a
feature independence assumption. In the algorithm for Ker-
nelSHAP (Lundberg & Lee, 2017), conditional expectations
are estimated by assuming feature independence; samples
of the features in S̄ = D \ S are drawn from the marginal
joint distribution of these variables. This effectively approx-
imates an expectation over an interventional distribution
instead, though in a slightly different way from QII.

In Table 1, we categorize each method based on how they
define a value function vf,x(S) and how they estimate that
value function v̂f,x(S). In the rest of the paper, we will
refer to these value functions as either interventional or
conditional based on the estimation method. That is to say,
KernelSHAP, Shapley sampling values, QII, and FAE are
interventional methods, while TreeSHAP as well as some
other algorithms we will introduce later are conditional.

3. Mathematical issues
We now present a number of mathematically articulated
problems that arise when we attempt to interpret Shapley
values as feature importance measures. These problems
arise from the estimation procedures that are in use as well
as the fundamental axiomatic structure of Shapley values.

3.1. Conditional versus interventional distributions

A fundamental difference between the interventional and
conditional value functions is revealed by what we call the
indirect influence debate. Suppose f is defined with domain
Rd, but for a certain feature i, f(x) = f(x′) whenever
xj = x′j for all j ̸= i; that is to say, intervening on the value
of xi alone does not change the output of f . We call this a
variable with no interventional effect.

Should a feature with no interventional effect be considered
an “input” to this function? We could define a new function
f ′ with domain Rd−1 to perfectly capture the output, so
perhaps not. What if, in the relevant input space, xi is a
statistical proxy for some xj which does affect the output of
f? Shapley value based feature importance methods must
grapple with these choices.

Adler et al. (2018) take the information-theoretic position
that “the information content of a feature can be estimated

by trying to predict it from the remaining features.” This
perspective can help diagnose situations where an unde-
sirable proxy variable is being used by a model, as in
the classic case of redlining. While Adler et al. go on
to analyze how the accuracy of a model depends on in-
direct information, the conditional value function aligns
with this information-theoretic principle as well: If a cer-
tain feature i can help predict the features in S̄, then the
quantities vf,x(S ∪ i) = E[f(X)|XS∪i = xS∪i] and
vf,x(S) = E[f(X)|XS = xS ] may be meaningfully dif-
ferent, meaning that the marginal contribution of feature i is
nonzero. For this reason the Shapley value of the conditional
value function may attribute influence to features with no
interventional effect, a positive thing from the perspective
of Adler et al..

Merrick & Taly (2019), on the other hand, criticize the
capacity to attribute indirect influence as being paradoxical,
and show that interventional methods will never attribute
attribute influence to an xi which has no interventional effect
on f , which they see as a desirable property.

Unfortunately, the decision between the two types of value
functions is a catch-22. Both methods introduce serious
issues: Choosing a conditional method requires further mod-
eling of how the features are interrelated, which we describe
in 3.1.1, while choosing an interventional method induces
an “out-of-distribution” problem which we address in 3.1.2.

3.1.1. ISSUES WITH CONDITIONAL DISTRIBUTIONS

The conditional value function induces two major difficul-
ties. First, the exact computation of the Shapley value for
a conditional value function would require knowledge of
2d different multivariate distributions, and so a significant
amount of approximation or modeling is necessary. Second,
since influence can be computed on an arbitrarily large set
of features, it becomes necessary to choose a set that is
meaningful because the explanations may change based on
which features are considered.

Solutions have been proposed to deal with the computational
complexity of this problem. The TreeSHAP algorithm es-
timates the conditional expectations of any tree ensemble
directly, without sampling, using information computed
during model training. The algorithm utilizes information
about the training instances which fall into each leaf node
to model each conditional distribution. It is not, however,



Problems with Shapley-value-based explanations as feature importance measures

set up to attribute influence to variables without an interven-
tional effect, as the trees contain no information about the
distribution of variables not in the model.

For arbitrary types of models, estimating the conditional
expectations requires a substantial amount of additional
modeling of relationships in the data which are not necessar-
ily captured by the model that one is trying to explain. Aas
et al. (2019) and Frye et al. (2019) have developed methods
that aim to generate in-distribution samples for the relevant
calculations.

Even if computational issues are resolved, there are ad-
ditional inconsistencies introduced by the capacity of the
Shapley value to attribute influence to an arbitrarily large
feature set given a single function. The modeler must decide
which features count as players in the cooperative game and
which are redundant, and since the problem definition posits
that the attributions add up to the value of f(x), this choice
can affect the resulting explanations.

Consider the addition of a redundant variable C to a dataset
with two features, A and B, so that P (XC = XB) = 1.
Suppose a model f is trained on all three features. Intu-
itively, the features B and C should be equally informative
to the model and so should have the same Shapley value un-
der the conditional value function. Formally, the following
properties will hold:

E[f(X)|XB , XC ] = E[f(X)|XB ] (6)
= E[f(X)|XC ] (7)

E[f(X)|XA, XB , XC ] = E[f(X)|XA, XB ] (8)
= E[f(X)|XA, XC ] (9)

so this means vf,x(B) = vf,x(C) = vf,x(BC) and
vf,x(AB) = vf,x(AC) = vf,x(ABC). Therefore, for any
data instance x,

ϕv(A) =
1

3
∆v(A, ∅) +

2

3
∆v(A,BC) (10)

ϕv(B) = ϕv(C) =
1

3
∆v(B, ∅) +

1

6
∆v(B,A) (11)

Now consider what would happen if we defined a new func-
tion f ′(xA, xB) = f(xA, xB , xB). For any data instance,
since xB = xC , f ′(x) = f(x). It is effectively the same
model for all in-distribution data points, so the games vf,x
and vf ′,x are the same for all subsets of variables. Yet if we
choose to limit the scope of our explanation to two variables
instead of three, the attribution for both A and B will come
out to be different:

ϕ′v(A) =
1

2
∆v(A, ∅) +

1

2
∆v(A,BC) (12)

ϕ′v(B) =
1

2
∆v(B, ∅) +

1

2
∆v(B,A) (13)

Notice that ϕ′v(B) is neither equal to ϕv(B), its assigned
influence in the 3-variable setting, nor ϕv(B) + ϕv(C),
the “total” influence of the two identical variables in the
3-variable setting. The relative apparent importances of A
and B thus depend on whether C is considered to be a third
feature, even though the two functions are effectively the
same.

It is not obvious whether two statistically related features
should be considered as separate “players” in the cooper-
ative game, yet this choice has an impact on the output of
these additive explanation models. Suppose, for instance,
that B is a sensitive feature, and C is a non-sensitive feature
that happens to perfectly correlate with it. Two different
“fairness” audits of the same function would come out with
quantitatively different results.

Frye et al. (2019) propose to a solution to the problem in
terms of incorporating causal knowledge:

...If xi is known to be the deterministic causal
ancestor of xj , one might want to attribute all the
importance to xi and none to xj .

They propose not only discounting fully redundant vari-
ables which are causal descendants of other variables in the
model, but relaxing the symmetry axiom which uniquely
defines the Shapley value. Instead of averaging marginal
contributions over every permutation, they suggest defin-
ing a quasivalue which considers only certain permutations;
for example, orderings which place causal ancestors before
their descendants.

In this framework, fully redundant features will receive zero
attribution and will not change the resulting value of the
remaining features. For instance, in the above example, if
variable C were known to be a causal descendant of B, the
Asymmetric Shapley Values of A and B under f ′ will be
the same as they were under f .

A fully specified causal model is not required to use this
method: they “span the data-agnosticism continuum in the
sense that they allow any knowledge about the data, how-
ever incomplete, to be incorporated into an explanation of
the model’s behaviour.” The results in Frye et al. (2019)
demonstrate, however, the sensitivity of the game theoretic
approach to the amount of prior knowledge about the rela-
tive agency of each feature, which we consider a significant
limitation of the approach.

There are thus both practical and epistemological challenges
with computing the Shapley values of games with a condi-
tional value function.
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Figure 1. Samples that might be drawn to estimate E[f(1, Y )] and E[f(X, 2)] to explain f(1, 2) for some function f , given correlated
Gaussian distributions for X and Y , depending on whether the expectation is taken over X|Y = 2 and Y |X = 1 (left) or X and Y (right)

3.1.2. ISSUES WITH INTERVENTIONAL DISTRIBUTIONS

Conditional value functions introduce undesirable complex-
ities to the feature importance problem, so those inclined
against methods with the capacity for attributing indirect
influence may prefer the methods interventional value func-
tions instead. These methods, however, are highly sensitive
to properties of the model which are not relevant to what it
has learned about the data it was trained on.

Methods which use an interventional value function funda-
mentally rely on evaluating a model on out-of-distribution
samples (Figure 1). Consider, for example, a model trained
on a data set with three features: X1 and X2, both N(0, 1),
and an engineered feature X3 = X1X2. To calculate
vf,x({1, 2}) for some x = {x1, x2, x3}, we would have
to estimate E(f(x1, x2, X3)) over some distribution for
X3 which does not depend on x1 or x2. Therefore we
will almost certainly have to evaluate f on some sample
{x1, x2, x′3} which does not respect x′3 = x1x2 - thus, it is
well outside the domain of the actual data distribution. The
model f has never seen an example like this in training, and
has therefore not learned much about this part of the feature
space. Its predictions on this feature space are not neces-
sarily relevant to the task of explaining an in-distribution
sample, yet the explanations will be affected by them.

This “out-of-distribution” phenomenon has been explored
recently by Hooker & Mentch (2019), who show why
“permutation-based” methods to evaluate feature importance
can be highly misleading: when values are substituted into
feature set S̄ that are unlikely or impossible when condi-
tioned on feature set S, the model f is forced to extrapolate
to an unseen part of the feature space. They show that these
feature importance methods are highly sensitive to the way
in which the model extrapolates to these edge cases, which
is undesirable information for a model “explanation” to
capture.

Slack et al. (2020) demonstrate how to exploit this sensitivity
by devising models which illegally discriminate on some
protected feature for in-distribution samples, but exhibit
different behavior on the out-of-distribution samples used
by KernelSHAP so as to simulate “fairness” in the resulting
explanations. By manipulating the model’s behavior on
unfamiliar parts of the feature space, they can twist the
explanations on the familiar part to their will.

These challenges illustrate that intervening on a subset of
features of a data case before applying a model trained on a
sample from a certain distribution is inherently misleading.

3.2. Additivity constraints

In addition to the problems demonstrated above, which
have to do with the choice between two families of value
functions, we also identify problems which are common to
both. These are linked to the axiomatic underpinnings of
Shapley values.

For any two of the axioms described in Section 2.1, there ex-
ists an alternative attribution between players which satisfies
those two but not the other; the Shapley value is therefore
only unique because it satisfies all three. Since the notion
of the sum of two games is not especially meaningful, the
Additivity axiom has been described by game theorists as
“mathematically convenient” and “not nearly so innocent as
the other two” (Osborne & Rubinstein, 1994). The choice
to constrain the value to be unique in this way has implica-
tions for what kinds of models can be explained intuitively
by the Shapley value. Even in simple cases where feature
independence renders the interventional versus conditional
debate irrelevant, we find the Shapley value conceptually
limited for non-additive models.

The Shapley value seems to intuitively align with what
is considered important in an additive setting. Consider
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applying any of the expectation value functions to f(x) =
β0+β1x1+...+βdxd where the featuresXi are independent.
For any subset S,

vf,x(S) = EXS̄ |XS
[f(xS ,XS̄)] (14)

= f(xS , E[XS̄ ]) (15)

=
∑︂
j∈S

βjxj +
∑︂
j∈S̄

βjE[Xj ] + β0 (16)

so the marginal contribution for feature i ̸∈ S is∑︂
j∈S∪i

βjxj +
∑︂

j∈ ̄S∪i

βjE[Xj ] + β0

−

⎛⎝∑︂
j∈S

βjxj +
∑︂
j∈S̄

βjE[Xj ] + β0

⎞⎠ (17)

=
∑︂
j∈S

βjxj + βixi +
∑︂

j∈ ̄S∪i

βjE[Xj ] + β0

−

⎛⎝∑︂
j∈S

βjxj + βiE[Xi] +
∑︂

j∈ ̄S∪i

βjE[Xj ] + β0

⎞⎠
(18)

=βi(xi − E[Xi]) (19)

In this way, the Shapley value is supported by the common
intuition that coefficient size, if variables are appropriately
scaled, signals importance in a linear model.

The additivity axiom is aligned with additive models in
another way: the games resulting from two models sum to
the expectation game of the sum of the two models. This
seems reasonable when the models are additive in the first
place.

Now imagine if the additivity constraint were relaxed. We
could use an alternative attribution ψ which satisfies the
other two axioms: ψ : ψ(i) = v(i) for i ∈ U and ψ(i) =
1
|U | (v(D)−

∑︁
j∈U v(j)) where U is the set of dummy fea-

tures. Using the expectation value function in this setting,
any feature which did not satisfy βi(xi−E[Xi]) = 0 would
get the same attribution. In this sense the additivity con-
straint seems necessary for a game-based feature attribu-
tion to provide any meaningful quantities about an additive
model. Under an interventional interpretation of the attri-
bution — using the values to assess which data changes
produce the largest model prediction change — this is not a
helpful property.

Under an interventional interpretation, Shapley values are as
uninformative for non-additive models as this alternative at-
tribution is for linear ones. For instance, any value function
which always evaluates to 0 except on the grand coalition
will evenly distribute influence among players. Consider

a model given by f(x) = Πd
j=1xd where the features are

independent and centered at 0. Then for any subset S,

vf,x(S) = E[f(XS ,XS̄)|XS = xS ] (20)

= E[

d∏︂
j=1

Xd|XS = xS ] (21)

=

d∏︂
j=1

E[Xj |XS = xS ] (22)

=

⎛⎝∏︂
j∈S

xj

⎞⎠⎛⎝∏︂
j∈S̄

E[xj ]

⎞⎠ (23)

which, sinceE[xj ] is 0, is always 0 unless S = D. Then the
Shapley value for every feature i is 1

df(x), regardless of the
value xi. Even if, for instance, the magnitude of one of the
variables is much higher than the other. This property will,
in fact, hold for all multiplicative functions of independently
distributed, zero-centered data.

Shapley values are touted for their “model-agnostic” quality,
but under the lens of a particular interpretation, this is not
the case.

4. Human-centric issues
The analysis from Section 3 demonstrates the mathemati-
cal issues with feature importance methods derived from
Shapley values and suggests how one might mitigate them.
In this section we turn to the human side of the interaction
between feature importance methods and the people who
use them. This perspective is closer in spirit to the “human-
grounded metrics” that Doshi-Velez & Kim (2017) describe
in comparison with the “functionally-grounded evaluation”
of the previous section.

We use the framework set out by Selbst & Barocas (2018),
who argue that there are three general motivations behind
the call for explanations in AI.

The first is a fundamental question of autonomy,
dignity, and personhood. The second is a more
instrumental value: educating the subjects of auto-
mated decisions about how to achieve different re-
sults. The third is a more normative question—the
idea that explaining the model will allow people
to debate whether the model’s rules are justifiable.

In this section, we attempt to reconcile the Shapley value
feature importance formalization of machine learning “ex-
planations” with these three goals. We argue that the the-
oretical properties of the Shapley value are not naturally
well-suited to any one of these objectives. While we focus
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here on these issues in the context of Shapley values, many
of these critiques also apply to other explanatory methods.

4.1. Explanations as contrastive statements

The presence of the phrase “right to explanation” in the
GDPR illustrates the sense many of us have that it is inher-
ently unethical to make decisions about an individual with-
out providing an explanation, in a way that Selbst & Barocas
(2018) argue has more to do with “procedural justice” than
“wanting an explanation for the purpose of vindicating cer-
tain specific empowerment or accountability goals.”

It is not immediately clear how to formally evaluate a
method that provides explanations merely because it should,
rather than to improve on a particular metric or task. In this
setting, Doshi-Velez & Kim suggest the empirical approach
of running user tests where humans are provided with ex-
planations and they evaluate their “quality”. But in fact,
what humans consider a good explanation has been studied
extensively in the social sciences, leading to several formal
theories of how humans generate and select explanations.

Miller (2019) provides an overview of this literature. One
of his major findings is that the way humans explain phe-
nomena to each other is through contrastive statements:

People do not explain the causes for an event per
se, but explain the cause of an event relative to
some other event that did not occur; that is, an
explanation is always of the form “Why P rather
than Q?”, in which P is the target event and Q is a
counterfactual contrast case that did not occur.

He attributes this insight to work by Lipton (1990). More
recently, a similar argument has been made by Merrick
& Taly (2019), referencing earlier work by Kahneman &
Miller (1986).

We now outline different ways in which Shapley values can
be interpreted as contrastive explanations.

4.1.1. SHAPLEY VALUE SETS AS A SINGLE
CONTRASTIVE STATEMENT

The above-mentioned research supports the hypothesis that
people ask for explanations when the outcome, P, is “un-
expected” compared to the outcome Q. In this sense, we
can interpret Shapley-based explanations as a contrastive
statement where the outcome to be explained is v(D) and
the foil – the counterfactual case which did not happen – is
implicitly set to be v(∅). In the “local” settings described
earlier, v(D) is f(x) and v(∅) is E(f(x)):

f(x) = E(f(x)) + ϕ1 + ϕ2 + ...+ ϕd

Thus, the Shapley values can be thought of as a set of an-
swers to the question, “Why f(x) rather than E(f(x))?”

While the expected value of a function seems like a natu-
ral foil to an “unexpected” f(x), due to the properties of
the expectation, there may not be a scenario in the data
space of X with the outcome E(f(x)). Thus, the expected
value may not be “expected” by anyone with a reasonable
understanding of the situation at hand at all.

If we are willing to consider intervention distributions (Sec-
tion 2.2.1), then the framework provided by Merrick & Taly
(2019) provides a slightly different contrastive explanation:
in their setting, the Shapley value assignment can be thought
of as a set of answers to the question, “Why f(x) rather than
f(r)?”, where r is chosen from the reference distribution.
This of course requires the specification of the reference dis-
tribution and carries with it the estimation issues described
above in Section 3.1.2.

4.1.2. MARGINAL CONTRIBUTIONS AS CONTRASTIVE
STATEMENTS

An alternate way to consider Shapley value-based methods
as contrastive statements is by examining the marginal con-
tribution of features. The set of marginal contributions of
each feature i, which are averaged in a certain way over all
subsets S to calculate the Shapley value, can be thought of
as a set of contrastive explanations. Each quantity ∆(i, S)
represents a contrastive explanation for why feature i is
important: “Why choose a model with S and i rather than
a model with just S? Because it improves v by ∆(i, S)
amount.” This quantity is an important part of stepwise
selection, a modeling procedure in which features which
increase the accuracy of a model are successively added to
the modeling set.

Note that regardless of what order features were actually
added to the model in, all permutations are considered when
the Shapley value is calculated. It is not clear that taking an
average of quantities representing “all possible contrastive
explanations” for a certain set of foils is a sensible way to
summarize information. Instead, Miller (2019) argues that
humans are selective about explanations: certain contrasts
are more meaningful than others. An example of this is the
difference between necessary and sufficient causes:

Lipton argues that necessary causes are preferred
to sufficient causes. For example, consider muta-
tions in the DNA of a particular species of beetle
that cause its wings to grow longer than normal
when kept in certain temperatures. Now, con-
sider that there are two such mutations, M1 and
M2, and either is sufficient to cause the muta-
tion. To contrast with a beetle whose wings would
not change, the explanation of temperature is pre-
ferred to either of the mutations M1 or M2, be-
cause neither M1 nor M2 are individually neces-
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sary for the observed event; merely that either M1

or M2. In contrast, the temperature is necessary,
and is preferred, even if we know that the cause
was M1.

Consider, without specifying how to quantify the importance
v of a feature coalition, computing some kind of allocation
for each feature to analyze the positive classification of a
beetle with longer wings. Lipton’s argument above suggests
that since all “yes” cases share a property T , a contrastive
statement highlighting this is more relevant than compar-
isons based on M1 or M2. This is fundamentally at odds
with the idea that the “yes” prediction should be split ad-
ditively between different coalitions of M1, M2 and T , a
property induced by the notion of the Shapley value.

4.2. Using Shapley-valued based methods to enable
action

One motivation for “explaining” a function is to enable in-
dividuals to figure out how to achieve a desirable outcome.
For example, one might allow an individual to query the
model for a specific contrastive explanation in which the
person p’s outcome, f(p), is compared with a person q with
desirable outcome f(q) = Q determined by the user, such
that the user might be able to alter their own situation to
approximate q. This setup has been formalized as the “coun-
terfactual explanation” problem by Wachter et al. (2017)
(with an analysis of hidden assumptions by Barocas et al.
(2020)). Ustun et al. (2019) further specify a way to model
this problem by searching for changes within characteris-
tics which are actually mutable; they call this the “action-
able recourse” problem (with a corresponding analysis by
Venkatasubramanian & Alfano (2020)).

Unlike these methods, Shapley value based frameworks do
not explicitly attempt to provide guidance how a user might
alter one’s behavior in a desirable way. Further, observing
that a certain feature carries a large influence over the model
does not necessarily imply that changing that feature (even
significantly) will change the outcome favorably.

Suppose, in a very simple nonlinear example, that a uni-
variate model is defined as f(x) = 2− (x− 1)2, for some
X ∼ N(0, 1). A person for whom x = 1 will get f(1) = 2,
and E(X) = 0, so the Shapley value for this person’s single
input is then ϕ(x) = 2. Suppose they were hoping for an
even higher score. The fact that the value is positive, along
with the general knowledge that 1 is a bit high with respect
to an average value of X , might make this person think that
increasing their x value even more will increase their score
– but it will not.

This problem stems from the fact that the contrastive quan-
tity E(f(x)) is not desirable, but even if v(∅) is chosen to
be some desirable outcome f(q) of some q, such as in Mer-

rick & Taly (2019), the Shapley values themselves do not
correspond to specific actions: the interventional effect of
changing one input from x to that from q is just one of the
marginal contributions that are averaged together to form
the Shapley value of that input, as we discussed in Section
4.1.2.

4.3. Shapley-based explanations for normative
evaluation

Shapley-value-based explanations are primarily used for pur-
poses of normative evaluation: deciding whether a model’s
behavior is acceptable (Bhatt et al., 2020). This is done
either at the development stage, to help a human evaluate
a model, or at the decision-making stage, to help a human
evaluate a specific decision made by a model. In this sec-
tion we explore how the information content of the Shapley
value is insufficient for evaluation. We marshal evidence to
make three points. Firstly, data scientists do not have a clear
mental model of what insights Shapley-value-based analysis
brings. Secondly, in the face of this uncertainty, they tend
to rely on narrative and confirmation biases. Thirdly, even
if they do understand the analysis, it is not obvious that it
can be operationalized for specific evaluation tasks.

Since there is no standard procedure for converting Shapley
values into a statement about a model’s behavior, developers
rely on their own mental model of what the values repre-
sent. Kaur et al. (2020) conducted a contextual inquiry and
survey of data scientists to observe their interpretation of
interpretability tools including the SHAP Python package.
They found that many participants did not have an accurate
mental model of what a SHAP analysis represents, yet used
them to make decisions on whether the model was ready for
deployment, over-trusting and misusing the tool.

Using feature importance during model development in this
way is ripe for narrative and confirmation biases. Passi
& Jackson (2018) conducted ethnographic fieldwork with
a corporate data science team and described situations in
which applying intuition to feature importance was a key
component of the model development cycle. In one instance,
when developers communicated the results of a modeling
effort to project managers, the stakeholders immediately
decided it was “useful” based entirely on the feature impor-
tance list:

Certain highly-weighted features matched busi-
ness intuitions, and everyone in the meeting con-
sidered this a good thing. . . . Regarding counter-
intuitive feature importances, [a data scientist] re-
minded [the stakeholders] that machine-learning
models do not approach data in the same way hu-
mans do. He pointed out that models use “a lot of
complex math” to tell us things that we may not
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know or fully understand.

This suggests that even when an individual lacks a correct
mental model of the meaning of Shapley values, they may
use them to justify their evaluation anyway, whether or not
this analysis is well-founded.

In support of this hypothesis, empirical studies have shown
that interpretability is not always helpful in task-specific
settings. Poursabzi-Sangdeh et al. (2018), for instance,
demonstrated that “interpretable” models may not be easier
to evaluate:

Participants who were shown a clear model with a
small number of features were better able to sim-
ulate the model’s predictions. However, contrary
to what one might expect when manipulating in-
terpretability, we found no improvements in the
degree to which participants followed the model’s
predictions when it was beneficial to do so. Even
more surprisingly, increased transparency ham-
pered people’s ability to detect when the model
makes a sizable mistake and correct for it, seem-
ingly due to information overload.

This suggests that common intuition for the benefits of in-
terpretability (and the types of questions it can help answer)
may be based on faulty assumptions, and these questions
should instead be concretely specified and tested. For in-
stance, data scientists might want to know:

• Whether an error was made at any point in the data
processing pipeline for a certain feature

• Whether the model is acting upon spurious correlations
or other artifacts of training data

• Whether the model exhibits inappropriate biases

• Whether the model’s accuracy will improve if a certain
feature is included or excluded

While Shapley-value-based methods might help qualita-
tively inform investigations that lead to answers to these
questions, it is not clear that they provide direct answers
to any specific question related to the points of interest
above. Weerts et al. (2019), for instance, conducted a
human-grounded evaluation of SHAP and did not find evi-
dence that it helped users assess the correctness of predic-
tions.

5. Conclusion
Shapley values enjoy mathematically satisfying theoretical
properties as a solution to game theory problems. However,

applying a game theoretic framework does not automati-
cally solve the problem of feature importance, and our work
shows that in fact this framework is ill-suited as a general
solution to the problem of quantifying feature importance.
Rather than relying on notions of mathematical correctness,
our work suggests that we need more focused approaches
that stem from specific use cases and models, developed
with human accessibility in mind.
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